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Abstract This paper presents a navigation system
that enables small-scale unmanned aerial vehicles to
navigate autonomously using a 2D laser range finder
in foliage environment without GPS. The navigation
framework consists of real-time dual layer control,
navigation state estimation and online path planning.
In particular, the inner loop of a quadrotor is stabilized
using a commercial autopilot while the outer loop
control is implemented using robust perfect tracking.
The navigation state estimation consists of real-time
onboard motion estimation and trajectory smoothing
using the GraphSLAM technique. The onboard real-
time motion estimation is achieved by a Kalman filter,
fusing the planar velocity measurement from match-
ing the consecutive scans of a laser range finder and
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the acceleration measurement of an inertial measure-
ment unit. The trajectory histories from the real-time
autonomous navigation together with the observed
features are fed into a sliding-window based pose-
graph optimization framework. The online path plan-
ning module finds an obstacle-free trajectory based
the local measurement of the laser range finder. The
performance of the proposed navigation system is
demonstrated successfully on the autonomous naviga-
tion of a small-scale UAV in foliage environment.

Keywords Unmanned aerial vehicle - Simultaneous
localization and mapping - Path planning - GPS-less
navigation

1 Introduction

Navigation of mobile robotics platforms in GPS-
denied environments is being intensively studied in the
research community, such as indoor offices [22, 25],
underwater [19] and urban canyons [9]. This paper
presents the autonomous navigation of a small-scale
unmanned aerial vehicle (UAV) in foliage environ-
ment. Navigation of ground vehicles in foliage envi-
ronment has been addressed in [10, 11] where a car
equipped with a laser range finder drove through Vic-
toria park in Sydney, Australia. The steep terrain, thick
understorey vegetation and abundant debris character-
istic of many forests prohibit the deployment of an
autonomous ground vehicle in such scenario. A UAV
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with autonomous navigation capability would be of
paramount importance in forest survey, exploration
and reconnaissance [3, 5].

The idea of autonomous flight of UAV in forest
has been attempted using a low-cost inertial measure-
ment unit (IMU) and a monocular camera [14], in
which an unscented Kalman filter (UKF) was used
to estimate the locations of obstacles and the state
of UAV. Experiment verification was carried out with
a remote control car running in synthetic outdoor
environment. More recently, Ross et al. [21] realized
autonomous flight through forest by mimicking the
behavior of human pilots using a novel imitation learn-
ing technique. The application of learning technique is
innovative but the system suffers from relatively high
failure rate which the UAV can not afford.

To the best of our knowledge, this paper presents
the first successful autonomous navigation of a small-
scale UAV in unknown foliage environment. The
navigation framework consists of real-time dual layer
control, onboard motion estimation and pose-graph
optimization based on GraphSLAM [23] and online
path planning [12]. The whole navigation system is
implemented on a quadrotor UAV equipped with a
laser range finder and an IMU. The modular design
of the framework makes it readily applicable to other
mobile robotic navigation system in obstacle-strewn
environment without GPS.

The remaining part of the manuscript is orga-
nized as follows: Section 2 presents the system
structure, including the hardware and software struc-
ture respectively. Section 3 introduces the dynamics
model structure of the UAV and presents the design
of a robust perfect tracking control law. Section 4
presents the state estimation framework consisting of
real-time motion estimation for autonomous control
and the pose-graph optimization based on Graph-
SLAM. Section 5 presents the online path planning
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with only the local measurement of the laser range
finder. Section 6 presents the experimental results
regarding the autonomous flight and pose-graph opti-
mization in outdoor environment. Finally, Section 7
concludes the paper and gives direction for future
research.

2 Unmanned System Structure

The system structure of the UAV includes the hard-
ware platform configuration, the software structure
and the navigation system structure. Each of the
three parts is indispensable for realizing a success-
ful autonomous flight in GPS-denied environment.
We will present these structures in this section and
highlight the motivation for using such configurations.

2.1 Navigation System Structure

The navigation system of UAV is depicted in Fig. 1,
including functional modules such as the UAV dynam-
ics, autonomous control, state estimation and path
planning. We first report the techniques used in each
module in order to realize the autonomous flight of
UAV in forest. More details of each part will be
covered in latter sections.

To maneuver in forests consisting of a large num-
ber of obstacles, the platform has to be compact in size
and is capable of hovering in the air. Platforms like
quadrotors, helicopters and coaxial rotors all fulfill
such requirements. In this paper, we use a quadrotor
due to its unique advantages, such as the symmet-
ric structure, the easy assembly of payload and the
vast availability of commercial off-the-shelf (COTS)
autopilot. The dynamics of a quadrotor consists of the
inner loop dynamics and the outer loop dynamics. The
inner loop dynamics relates the control input to the
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angular motion while the outer loop dynamics relates
the angular motion to the linear velocity and position.
We utilize a COTS autopilot to stabilize the inner loop
dynamics and identify the outer loop dynamics in the
frequency domain.

After the inner loop dynamics is stabilized, we
design a Robust and Perfect Tracking (RPT) control
law [16] to control the UAV outer loop to track a
trajectory reference generated from the path planning
module. The RPT problem is to design a controller
such that the resulting closed-loop system is asymptot-
ically stable and the controlled output almost perfectly
tracks a given reference signal in the presence of
any initial conditions and external disturbances. The
almost perfect tracking means the ability of a con-
troller to track a given reference signal with arbitrarily
fast settling time despite of external disturbances and
initial conditions.

The foliage environment renders the GPS signal
unreliable, making the state estimation in such envi-
ronment a challenging problem. We design the state
estimation to include two parts: motion estimation and
GraphSLAM [23]. The motion estimation is essen-
tially a laser odometry technique, which matches the
consecutive laser scans to generate the 2D velocity
estimation. Combined with the acceleration measure-
ment of IMU, a Kalman filter is designed to estimate
the position and velocity of the UAV, which are used
directly for the closed-loop control. On the other hand,
the position estimate from the motion estimation is
prone to drift, thus GraphSLAM is used as a post opti-
mization process to achieve the optimal trajectory and
consistent mapping.

Fig. 2 The virtual design of the quadrotor UAV

In unknown obstacle-strewn environment, the path
planning part plays a critical role in providing a trajec-
tory reference which is both obstacle-free and meets
the dynamics constraints of the UAV. Without a global
map, the path planning needs to rely on only the local
measurement of each scan to extract such a feasible
path. The measurement of the laser scanner is inher-
ently realized in polar coordinate, thus a polar grid
map is first built based on the current laser scan mea-
surement. In the polar grid map, by setting a starting
point and a goal point, we use A* searching algorithm
to find a series of line segments. The first sharp turn-
ing point in the line segments is selected as the local
target. With the current starting point and the local
target, the trajectory generation problem is treated
as a two point boundary value problem for a triple
integrator with constrained states and input. Details of
the path planning will be covered in Section 5.

2.2 Hardware System Structure

The quadrotor is a fully customized platform
(Figs. 2-3) designed by the NUS UAV Team. The
platform is configured to be applicable in both indoor
and outdoor environments, such as modern offices
and forests. The platform is composed of carbon fiber
plates and rods with a durable acrylonitrile butadi-
ene styrene (ABS) landing gear to reduce the bare
platform weight. The overall dimensions are 35 cm in

Fig. 3 NUS quadrotor platform with two onboard laser range
finders
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height and 86 cm from tip-to-tip. Different configura-
tions of the rotor blade and the motor are compared
before an optimal design is achieved. The motors used
for the platform are 740 KV T-Motors with Turnigy
Plush - 25 A Bulletproof electronic speed controllers.
The propellers are APC 12x3.8 clockwise and anti-
clockwise fixed pitch propellers. Each motor and pro-
peller setup could generate 15kN static thrust. The
final bare platform’s main body weighs 1 kg. Its maxi-
mum total take-off weight reaches 3.3 kg with a 4 cell
4300mAh lithium polymer battery. We have tested
that the platform was able to fly at 8 m/s for a period
of 10 to 15 minutes depending on the total weight and
the battery volume.

The platform is also fully customizable in terms
of sensor arrangement and is scalable such that addi-
tional computational boards could be mounted with a
stack-based design. As shown in Fig. 3, the platform
is equipped with two laser range finders. The above
one is Hokuyo UTM-30LX, used to detect the envi-
ronment in the horizontal plane. The bottom one is
Hokuyo URG-04LX, used to scan the vertical plane
to measure the height of the UAV in complex terrain
conditions. One noteworthy thing is that the whole
avionics system is mounted on the platform through
four mechanical isolators (CR1-100 from ENIDINE).
Experiment results show that the noise of acceleration

Mission plan processor

Target

_ Featur

Update pose

State &

measurements in x, y, z axis of the IMU decreases by
5 times compared with that without any vibration iso-
lation. The vibration isolation is also beneficial for the
laser range finder which can only withstand 20 g shock
impact for 10 times.

2.3 Software System Structure

Considering the comprehensive functions and logics
implemented on UAV onboard system, it is further
structured into two main modules given the hierar-
chical property of navigation and control. As shown
in Fig. 4, two onboard processors are adopted exclu-
sively for each modules: Mission plan processor and
Flight control processor. As mission plan tasks nor-
mally involve computationally intensive algorithms
such as path planning, obstacle avoidance and SLAM,
a high-end powerful Intel Core i7 based proces-
sor called Mastermind (from Ascending Technolo-
gies Germany) with Ubuntu 12.04 is deployed as
the mission plan processor. The Ubuntu operating
system has mature development environment with
rich libraries for robotics applications, which can
facilitate the overall development. For the critical
flight control, a lightweight yet powerful OMAP3530
based Computer-On-Module (COM) called Gumstix
Overo Fire is adopted. The flight control system

Flight control processor

&

e -

_____________

Ground

control system

Fig. 4 Software structure of the UAV navigation system. Robust perfect tracking control is implemented in CTL, and scan matching
in Laser, Kalman filter in /MU, GraphSLAM in SLAM and obstacle avoidance in Path plan
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is implemented based on QNX Neutrino real-time
operating system (RTOS). QNX RTOS is developed
with a true microkernel architecture which integrates
only the fundamental services including CPU schedul-
ing, interprocess communication, interrupt and timers.
Drivers and user applications are all executed as user
processes. This architecture can provide a quite small
yet fully customizable and manageable user applica-
tion suits with necessary drivers and libraries.

Based on the specifications from the system struc-
ture, tasks to realize the flight missions are examined.
The tasks are assigned, from the high level naviga-
tion to the low level flight control, into Mission plan
processor and Flight control processor respectively.
Since the Mastermind processor possesses powerful
processing capabilities, high level tasks such as SLAM
and Path planning are scheduled. For the flight control
subsystem, its subtasks are scheduled into the follow-
ing order to achieve the closed-loop control system.
Navigation sensors are retrieved first with Laser and
IMU. With the laser data, the scan matching is per-
formed on the two consecutive scan data, generating
incremental rotation and translation estimates. After
being fused with the acceleration measurement of the
IMU in a Kalman filter, the incremental translation
and rotation produce the navigation state estimates
which are further used for the control task CTL. With
the generated automatic control signal, motor driv-
ing signals are sent to the UAV from the SVO task to
realize 6 degree of freedom (DOF) movement. Other
auxiliary tasks are also implemented: the communi-
cation task CMM is used to send status data back
to Ground Control System (GCS) for user monitor-
ing and receiving user commands, the data logging
task DLG is used to record flight status data for post
flight analysis. Finally, to pass high level navigation
data to Flight control processor and share UAV sta-
tus with Mission plan processor, the inter-processor

communication task /CMM is implemented on both
processors.

All the tasks are scheduled in a periodic fashion,
whose executions follow the order in Fig. 4. On Flight
control processor, all the tasks are scheduled in 50
Hz. As high level data is only for navigation pur-
pose, a relative low scheduling frequency of 10 Hz is
implemented on Mission plan processor. CMM and
DLG are executed every one second to fully utilize the
efficiency of the processor.

3 Modeling and Control
3.1 Model Structure

Following the routines of traditional aircraft model [2,
20], the model structure of the quadrotor platform is
separated into the inner loop model and the outer loop
model, as illustrated in Fig. 5. The 6-DOF dynamics of
quadrotor consists of the 3-DOF translation dynamics
and the 3-DOF angular dynamics. Since the angular
dynamics of quadrotor is much faster than its trans-
lation dynamics, it is practical to extract the angular
dynamic model and the translational dynamic model.
The separation of the model structure facilitates the
design of separate controllers for the inner-loop model
and the outer-loop model.

In the current system hardware configuration, the
inner-loop attitude dynamics is stabilized using a
commercial autopilot ‘NAZA-M’, which is an all-in-
one stability controller for multi-rotor platforms. The
control inputs (Syat, Slon, Scol, Sped) from the remote
transmitter are fed into the onboard autopilot. Then
‘NAZA-M’ controller generates pulse width modula-
tion (PWM) signals to drive the four rotors to generate
the thrust forces. The four combined thrusts lift the
platform and maintain the attitude stability at the same

51‘#» mq - ¢ 4u>
Jlon mso Quadrotor 0 QU&dl"OtOI‘ v

_Olon | v
Ocol NAZA ms inner-loop 0 outer-loop w

T model model —
(5ped My r _ 1/}

Fig. 5 Model structure of the quadrotor UAV
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time. From the perspective of ‘NAZA-M’, the four
inputs from the remote transmitter correspond to the
control references for the roll angle (¢), the pitch angle
(6), the yaw angular rate (r), and the average motor
speed (£2) respectively.

In the outer loop aspect, the states regarding linear
velocity (u, v, w) and heading angle v are of con-
cern. In the lateral and longitudinal dynamics, there
is a dynamics model which maps the roll and pitch
angle to the lateral and longitudinal velocity respec-
tively, which is governed by the rigid body kinematics
with some damping effect from the air resistance. The
heave velocity w and heading angle ¥ are governed
directly by the inner loop controller.

Without knowledge of the internal structure of
firmware in ‘NAZA-M’, we treat the inner loop as a
black box and identify the inner loop model. This is
essential since we need to know the bandwidth of the
inner loop model to facilitate the design of the outer
loop controller. The inner model can be decoupled into
four input/output pairs. Due to the symmetric structure
of the platform, we note that the dynamics model in
the roll and pitch directions share the same set of equa-
tions. Referring to Fig. 5, the inner loop model can be
separated into three groups: the roll/pitch dynamics,
the yaw dynamics and the heave dynamics.

The inner loop model identification is performed
in the frequency domain. First, the platform with the
inner loop controller is perturbed in all directions dur-
ing which the corresponding input/output are logged.
Then the logged data are fed into a software called
CIFER [1] to derive a transfer function which matches
the best with the logged data [25]. The identified sub
system models are listed as follows:

— Roll/Pitch dynamics: input 8ja¢/610n, Output ¢/6
Transfer function:

9688
Hi(s)=— 3 5 .
s*427.68 5% +485.9 5% + 5691 s + 15750
ey
—  Yaw dynamics: input §peq, output v
Transfer function:
3.372
Hy(s) = - 2
— Heave dynamics: input §¢], output w
Transfer function:
—13.35
H = —. 3
6= ©)
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3.2 Outer Loop Control

In obstacle-strewn environments, fast and accurate
maneuvering of the UAV is required to avoid any pos-
sible collision. This poses challenges for the design
of outer loop controller. We need to control the UAV
to follow external references including the linear posi-
tion and the heading angle. In order to perform fast
and precise tracking of the given references, the RPT
controller is adopted from [4, 16]. The procedures of
designing an RPT controller for the state feedback
case has been addressed in [16] and a case study is
exemplified in [24].

For precision control, it’s desirable to include an
integrator to ensure zero steady state error in case of
step input. We propose the RPT controller which con-
siders the integration of position tracking error as an
augmented state. The system with state-augmentation
is formulated as:

010 ]
000
100
000
001
000

Xxy = Xxy +

Xy .
2:AUG .

L
S O O O O O
S O o O O
S O O O = O
- o o O o <O

Xy

Ty
w=[100000]%

=1

“

where Xey = [[e rp ry 10 p VIT5rp 1y 1a
are the position, velocity and acceleration references;
p, v are the actual position and velocity; e = p —r),
is the tracking error of position. Since there is error
integration f e in the augmented states, the feedback
control law would contain a term of K; [ e. Following
the steps in [16], a linear state feedback control law of
the form (5) is acquired,

Uxy = ny (&) ixy s ©)
where
Foo () = —kiw? @2 4+ 2twnki  2Lwn + ki
xy(8) = g3 g2 P
| @t 2ek 2otk
g2 € ’

(6)
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where ¢ is a design parameter to adjust the settling

time, w,, ¢, k; are the parameters that determine the

desired pole locations of the infinite zero structure of
Xy .

X\ug through:

P(s) = (s + ki) (52 4 2¢ wns + @) . (7)

In principle, when the design parameter ¢ is small
enough, the RPT controller gives arbitrarily fast
response. However, in practice, due to the constraints
of physical system and inner loop dynamics, we would
like to limit the bandwidth of the outer loop to be at
least one third of the inner loop system bandwidth.
The roll/pitch dynamics H; has a bandwidth of 3.82
rad/s. For roll/pitch outer loop controller, we select the
parameters in (8) to have a bandwidth of 0.83 rad/s:

wn=04, ¢ =12, ¢ =1, k=0.8. (8)

For the outer loop controller in heave dynamics and
yaw dynamics, the inner loop controller already con-
trols the heave velocity w and yaw angular velocity
r. We only need to design a controller to control the
height z and yaw angle . Similarly, the integral of
tracking error is augmented to the original system and

hy
forms another augmented system X ,7;:

0101 0
c oo ol ol
i WSl 000 | ™M o™
SAUG (0000 1
yhy = ihy
By =[ 100 0]%
©)]

where Xhy = [['e 7, ry plT;rp, ry are the posi-
tion, velocity references; p is the actual height or yaw
angle; e = p — r is the tracking error of height or
yaw angle.

A linear state feedback control law of the form (10)
is acquired,

Uhy = th(g) ;zhy > (10)
where
w 2w 2lw
F =|-— - -="1. 11
hy(g) |: e 82 82 ( )

For height controller:

on=05 ¢=11, ¢ =1. (12)

For yaw angle controller:

on=1, ¢ =1, ¢ =1. (13)

4 Navigation State Estimation
4.1 Estimation Framework

The state of UAV includes the position, the orientation
and the velocity. The orientation could be estimated
by the mechanization of angular measurement from
IMU. In the ideal case, the translation velocity could
be derived by integrating the acceleration measure-
ment once and the position for another integration.
Since the accelerometer output is subject to bias, the
double integration of acceleration will result in pro-
hibitively large position drift, rendering it inapplicable
for long time navigation of UAV. To facilitate success-
ful autonomous control of UAV, we proposed a state
estimation framework as shown in Fig. 6, consisting
of two sub-systems: front-end and back-end.

The front-end provides the essential estimate for
the onboard autonomous control and the back-end
optimizes the UAV trajectory for pose correction and
consistent mapping of the environment. However, the
GraphSLAM is in essence an off-line optimization
technique which can not be ran in parallel with the
onboard control loop. In practice, a sliding time win-
dow is applied to the trajectory history and only those
poses inside the sliding window are optimized. After

Motion Front-end
Estimation
Y
6D
Kalman Filter
Back-end X
Yes
Loop Closure? e
Add Edge Graph
Add Pose A
No
4
No End? Yes
Optimize Graph

Fig. 6 System schematics illustrating front-end and back-end
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the whole trajectory is obtained, a global optimiza-
tion in the back-end is performed to obtain the optimal
trajectory and the global consistent map.

In Fig. 6, we have put the loop closure detec-
tion block to the back-end. This makes sense because
we utilize the position and velocity estimates from
Kalman filter as the input into the the real-time
autonomous control. By putting the loop detection into
the back-end, the back-end module operates in a self-
contained manner which will not influence the real
time performance of the UAV control.

4.2 Front-End Estimation

The front-end block provides high frequency state
estimate for onboard autonomous control and the ini-
tial pose estimate for the back-end block. The block
diagram of the front-end state estimation is shown
Fig. 7, which consists of three main blocks: feature
extraction, scan matching and Kalman Filter.

Feature extraction is the first step toward accurate
motion estimation. Considering the operation envi-
ronment to be forests, we choose the center of trees
at flight height to be the features. A laser range
finder scans the environment continuously to provide
range information in 30 meter range of 270 degree
field of view. To extract the validated trees, the laser
scan range are processed in three steps: preprocess-
ing, segmentation and extraction. Preprocessing the
scan range is necessary since the raw laser data is
noisy and corrupted with outliers. Segmentation is
performed to generate clusters of range points cor-
responding to candidate tree stems. The extraction
process validates these clusters through a series of

10 Hz

Feature Extraction

A 4

Yy :I
Magnetometer 50 Ha Scan Matching

’ ’ T

(ug v4) Xg
(axg ayg.a )T v )Z/g

g Aygs Ozg ———
IMU > Kalman Filter 9
50 Hz g B ug
A X
9
w,

z
Barometer
50 Hz

Fig. 7 The front-end state estimation diagram
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geometric descriptors, producing the estimated centers
of clusters as the landmarks [7].

Scan matching of 2D range scans has been is a
mature technique to estimate robot pose in unknown
environment. But it suffers from local minima and
large rotation errors when using only raw measure-
ments. To overcome these problem, we use feature
based scan matching and incorporate the heading
angle measurement from IMU in the scan matching
process. The extracted features in each scan main-
tain a certain spatial distance to each other, making it
less possible for ambiguous data association. With the
heading measurement from IMU, the latter scan is first
projected to the previous scan using the heading angle
difference. This further reduces the wrong data asso-
ciation induced by possible large rotation movement.
Once the correct data association is established, the
incremental translation and rotation could be solved in
closed-form [17].

A Kalman filter is designed to fuse the sensor infor-
mation: the translation measurement (u;,, v;) from
scan matching, the height measurement z from barom-
eter or mirrored laser beam and the three axis acceler-
ation from IMU.

The process model is described by,

[f] _ [g” [‘V’:]+[;’}Rn/b(ab+wa), (14)

where Ry is the rotation matrix from the body frame
to the local north-east-down (NED) frame, ay, is the
acceleration measurement without noise, w, is the
acceleration measurement noise vector with normal
distribution, ay, + W, is the IMU acceleration mea-
surement in body-fixed frame, Py is the local NED
position vector, vy is the local NED velocity vector.
I and 0 are identity matrix and zero matrix of proper
dimension.
The measurement model is

y=[03x2 I33 03x1]|:€:i|+R, (15)
where R is the measurement covariance matrix with
normal distribution.

Implementing the KF requires discretizing the con-
tinuous process model (14) and the measurement
model (15) using zero-order-hold method. The follow-
ing procedure is a standard KF process with inter-
leaved time update and measurement update. One
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noteworthy point is that the laser motion estimation
update rate is 10 Hz while the acceleration measure-
ment refreshes at 50 Hz. When the motion estimation
measurement is not available, the state is updated
using only the process model (14).

4.3 Back-End Estimation

The position estimate from the Kalman filter is only
suitable for short time navigation. This is due to the
fact that the planar position is not observable in the
measurement equation and thus suffers from long term
drift. The back-end estimation use the GraphSLAM
technique to bound the position drift to facilitate long
range UAV navigation.

GraphSLAM requires the availability of all mea-
surements along the trajectory before they are used
to build up a graph and optimize it afterwards.
This makes GraphSLAM an off-line method, render-
ing it inapplicable for real-time navigation. We have
reported our results about using GraphSLAM as an
off-line optimization technique to generate consistent
maps in our previous work [6]. Here we present an on-
line GraphSLAM technique using a sliding-window
technique.

The main idea of the on-line GraphSLAM is to
set a sliding window along the trajectory, limiting the
search range only to those poses lying in the time win-
dow prior to the current pose. As illustrated in Fig. 8,
the first pose and it’s measurement is denoted as Xq. It
also serves as a reference origin to which all the future
poses will be referred. As the UAV collects more data,
a series of new poses and measurements are added,
including {x3 - - - X;}. The sliding window is initialized

Out In

Fig.8 Sliding window diagram with poses being pushed in and
popped out

with a capacity of n as the first pose X is pushed into
the window.

The online GraphSLAM based on the sliding win-
dow significantly decreases the drift of the position
estimate compared with that of the Kalman filter.
However, the introduction of sliding window is indeed
a sacrifice of the optimization performance by limit-
ing the searching range only in the 5 seconds sliding
window. For long time navigation, the UAV position is
still prone to drift without global optimization. There-
fore, a two-layer back-end framework is presented as
shown in Fig. 9. Poses and features from the front-
end are pushed into the sliding window at each time
step. After the local optimization, the optimized pose
estimate is transfered back to the front-end for real-
time control. At the same time, the locally optimized
pose is pushed into a larger container to store all the
poses and measurements, forming a global graph to
be optimized after the mission. This two-layer graph
setup makes sure the UAV achieves slow drift in the
pose estimation during flight and eventually obtains
a globally consistent trajectory and map afterwards.
This configuration is justified by the fact that the UAV
does not need perfect pose estimate during flight and
the slow drift caused by the local sliding window opti-
mization is acceptable for UAV operations lasting up
to 20 minutes.

Due to hardware constraints, the front-end and
back-end algorithms run in two onboard computers.
The front-end algorithms, including the scan match-
ing and the Kalman filter, run on the Gumstix Overo
Fire. While the back-end algorithms, including the
sliding window online GrpahSLAM and the global
pose graph construction, run on the Mastermind. The
two computers are connected through a serial port.
Figure 9 shows the message interaction between the
two computers. Initially, the state Py is directly fed to
the autonomous control. To optimize the initial state
Py, it is sent to Mastermind with its measurement.
The time delay caused by the local optimization, the
global pose construction and the serial communication
make it impossible to use Py directly for flight con-
trol. In particular, experiments show that the delay Az
between the initial Py and the optimized pose Pg is
300 ms. Recalling that the main loop in the front-end is
50Hz, the delay of 15 loops is not negligible for real-
time operation. To deal with the delay, we propose to
design a state update scheme to take into account the

@ Springer
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State for control [

Kalman filter

Front-end Py

Back-end

A

Local sliding window

Global pose graph

Fig. 9 A timing graph showing the interaction between the front-end, the sliding window and the global back-end

delay which works as follows: At time 79, we have an
initial pose Py from the Kalman filter. After time At
we received pose correction APy of Py, then we have
a new pose for time f,

P3 = Py APy. (16)
At any time ¢ > ty + At , the initial pose is,
P, = PoAP!, (17)

where APf) is the initial pose difference between P;
and Py. The update pose P} of time 7 is,

P! = Py AP} = P)AP AP}, (18)

At time #; a new initial pose is sent to the back-end
for optimization and after time ¢ the update pose AP»
is returned. The update state is again updated using
Eq. 18, except that the time index is changed from 7y
to t;.

5 Path Planning in Unknown Clustered
Environment

For the vehicle to navigate safely in the foliage envi-
ronment, it is necessary to have real-time path plan-
ning and obstacle avoidance capability. Due to the low
computational power of the on-board computer and
the general unknown environment, the path planning
and obstacle algorithm needs to be fast enough to run
in a mobile computer. Conventionally, a path planning
algorithm is treated as an optimization problem. But it
is generally difficult to solve due to the high dimen-
sion of optimization vector, which includes the state of
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the vehicle and the non-linear constraints introduced
by the obstacles. Even using state-of-art numerical
algorithms like the CPLEX, the convergence of the
solution is not guaranteed and the real-time capability
is hard to achieve. Therefore, in practical engineering
applications, a suboptimal solution is usually consid-
ered by separating the optimization problem into two
or more steps.

In our solution, we consider the planning in the con-
figuration space and the state space of the vehicle sep-
arately. This separation reduces the dimension of the
optimization problem and makes it possible to achieve
a real-time path planning algorithm in obstacle-strewn
environment. We propose a path planning system with
global path planner using A* searching [15] and a
local smoother using efficient boundary value prob-
lem solver [13]. The A* searching is performed in a
discrete grid map built from the laser scan measure-
ment. The vehicle in the grid map is considered as a
point-mass particle which could move from one grid
to all its connected grids. This does not violate the
actual vehicle model since the quadrotor could be sim-
ply considered as a double or triple integrator when it
operates at low speed [18].

The A* searching provides candidate target points
for the vehicle to reach. Due to the dynamic of the
UAYV, we would like to gain a trajectory that is able
to be limited on jerk, acceleration and velocity. We
use an bang-zero-bang based time optimal solution
to generate references meeting the vehicle’s dynamic
constraints [13]. Collision checking is also performed
to make sure that the smoothed trajectory does not col-
lide with any obstacles. This two-step path planning
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algorithm can provide dynamically feasible trajecto-
ries to lead the vehicle from any initial position to any
reachable final position. The path planning structure is
given in Algorithm 1.

Algorithm 1: Online path planning framework

Input: Current pose X, obstacle position {m;} in local body
frame,i=1,---,n.

Output: Trajectory reference Xef

Search in the configuration space using A*;

Connect the grids using split and merge, generating a series of

line segments;

Ry < take the first turning point of the line segment as the line
segments;

{r;} < sample multiple local targets around the current vehicle
state x and order them in descending order based on their

distance to the global target Rgy;

5 for all local targets in {r;} do

6 Xef < Solve the boundary value problem between x and r; ;

7 collision «— check if collision happens between {m; } and Xref ;
8
9

(S

w

IS

if collision then
Delete the current local target and choose the second best
local target ;
10 else
1 L Break ;

12 return Xpf;

The algorithm consists of several main blocks: the
global configuration space search using A* (step 1)
and the boundary value problem (step 6) [8]. The
boundary value problem seeks to generate a refer-
ence trajectory given two sets of conditions on the
boundaries. Reflexxes Motion Libraries [13] provides
a general solution to this problem. The global configu-
ration space search is to give a rough plan that ignores
the complex dynamics of the vehicle but considers
as much topological information as possible. Since
there is no prior map of the environment, a local map
based on the current laser range finder measurement
is built up in polar coordinate. The A* path planning
algorithm is actually a graph search algorithm. To run
the A* searching algorithm, a polar coordinate map
is first built from the input of a 30 m laser scanner.
For each obstacle point returned from the 30 m laser
scanner’s measurement, a Gaussian-based cost filed is
added around it. A preprocessed polar coordinate map
is shown in Fig. 10.

During the A* searching, the algorithm would gen-
erate a path with the lowest cost from the current
position of the vehicle to the target point. A typical
path is shown in Fig. 10 as the green line. The resulted
path normally consists of a series of waypoints located
in each grid in the polar coordinate. In order to find the
best direction the vehicle should aim for, a split and
merge algorithm is used to transfer these waypoints
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Fig. 10 A Gaussian cost map in polar coordinate. The color
ranging from red to blue indicates the closeness of the grid to
the detected obstacle

into a series of line segments. The split and merge pro-
cess finds the first turning point Rg, which is used to
determine the best target point to go. The direction and
the distance of the first turning point are then passed
to the local path planner to search for a collision free
path from the current vehicle position to the turning
point.

For the local planner, a similar idea close to the
vector field histogram (VFH) method is adopted. In
VFH, the vehicle always turns to the direction that
is both obstacle free and also towards the target Ry
from the global planner. The behavior is realized by
forming an optimal function that consists of different
objectives, such as distance to the global target and
the angle difference compared to the last direction. We
sample multiple local target points around the vehi-
cle and calculate the resulted trajectory based on the
current vehicle states and the local target points. The
trajectory that is both collision free and closest to R
is chosen. Each trajectory starts at the current vehi-
cle states and ends at the local target points with zero
velocity and zero acceleration. Therefore, the vehicle
is always at a safe state so that it could stop safely
when following the current trajectory.

6 Experimental Results

All the function blocks, including the RPT control law,
the onboard motion estimation and the path planning,
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are implemented in the UAV onboard processors to
form a comprehensive navigation system. The devel-
oped navigation system enables our customized UAV
to perform autonomous flight through a small area of
forest. The front-end state estimation is verified by the
flight test, and the back-end state estimation is vali-
dated using the onboard data in an off-line processing
manner.

6.1 Autonomous Flight in Forest

The test field is set in a small forest with sparse
trees as shown in Fig. 11. The distances among trees
are sparse enough to provide an obstacle-free trajec-
tory for the UAV to fly. At the flight height, some
trees have thick branches instead of a single tree
trunk. This poses challenges for the onboard feature
extraction and data association. The obstacle-free tra-
jectory is predefined by assuming knowledge of the
tree positions in the environment. This simulates the
case where the onboard obstacle avoidance is properly
functional. It should be noted that the map information
is not used during the process of motion estimation
and autonomous control.

Figure 11 shows the test platform flying in the test
field. The UAV platform is being autonomously con-
trolled while following a predefined trajectory. The
predefined trajectory is loaded into the system during
the system power up. The front-end state estimation
provides the position and velocity estimates which are
fed back to the RPT control law to control the UAV.

Fig. 11 The outdoor
testing scenario with the
flying quadrotor
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Figure 12 shows the position tracking performance
together with the tracking error. In the top two sub-
figures, the red dashed lines are the position references
and the blue solid lines are the state estimates from the
UAV. As can be seen from the top two sub-figures, the
RPT controller controls the UAV to track the position
reference in both x and y direction. The tracking error
in x direction is 0.2 meter and 0.5 meter in y direction.
The maximum tracking errors occur at the begin-
ning of the trajectory when there is step acceleration
reference.

The flight test demonstrates the accuracy of the
UAV dynamics model and the efficiency of onboard
motion estimation in a computation-limited process-
ing unit. It also shows that the front-end state estimate
can provide reliable state estimate for the RPT con-
troller.

6.2 Back-End Optimization

The back-end state estimation seeks to optimize the
initial trajectory to produce a consistent map of the
environment. To better verify the effect of trajec-
tory optimization, we test the GraphSLAM algorithm
using data collected in two environments: the indoor
forest environment (Fig. 13) and the outdoor real
forest (Fig. 11).

The indoor forest scenario consists synthetic trees
with perfect cylindrical shapes. Besides the poles,
square concrete pillars and the interior of the wall
will also be measured by the laser range finder. We
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manipulate the distance among the trees to make sure
there are enough number of features in each scan.
An autonomous flight is performed to collect all the
onboard data including the trajectory history and the
laser range data.

Figure 14 compares the map projected on the initial
trajectory and the optimized trajectory respectively.
Since there is no ground truth available in the indoor

Fig. 13 Indoor test scenario
for SLAM verification

forest dataset, we can not quantitatively analyze the
effect of trajectory optimization. We consider the con-
sistency of the projected map as the criteria to evaluate
the back-end state estimation. The initial map and tra-
jectory are the results of motion estimation based on
scan matching, marked by green dots plot. It can be
seen that when all the measurements are projected on
the initial trajectory, the overall map is not consistent.
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Indoor forest map using GraphSLAM
20 T T T T T

Y Position (m)
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Fig. 14 Map comparison between the initial trajectory and the
optimized trajectory

The interior walls and position of the square pillars
drift away. The red-dot plot is the optimized map and
trajectory. By visual checking of the map we could see
the optimized map is more consistent than the initial
map. Figure 15 shows close-view of one part of the
map, indicating that the red pillar retains its rectangu-
lar shape while the green pillars deform to an incorrect
way. Figure 15 also clearly manifests the perfect cir-
cular contour of the landmarks while the initial green
contours scatter around.

Indoor forest map using GraphSLAM: detail

ot ohaotis

Y Position (m)

X Position (m)

Fig. 15 Optimized map and trajectory detail
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After the evaluation of the GraphSLAM algorithm
in indoor environment, we apply the algorithm to the
dataset from in a real small forest. Figure 16 shows
the comparison between the initial map and the opti-
mized map for the forest. The green plot is the initial
map from the Kalman filter while the red one is the
optimized trajectory and map. It can be seen that
there are two neighboring clusters of green plots while
only one cluster of red points. Due to the complexity
of the environment, there is no hollow tree contours
extracted. There are still large clusters of objects
which do not correspond to trees in the environment.

The effect of trajectory optimization is less optimal
than the indoor forest dataset. This is expected since
the real environment exhibits several challenges: first,
the uneven terrain produces undesired ground strikes
of the laser range finder, making the feature extraction
a challenging task. Second, the real trees in the envi-
ronment are relatively smaller than the ones in indoor
forest and have thick branches at the flight height.
Wrong data association may happen at a certain time
step. Third, the distance among trees are very large,
leaving each segment in the clustered range scan with
limited number of points. Estimating the tree centers
with less points produces large position error. Last,

Update trajectory and map for forest data
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Fig. 16 Optimized map and trajectory in the small forest test
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the cross section of tree trunk at the scanned plane
may not follow a circular shape. The estimated posi-
tion of tree centers may be different when the trees
are scanned at different view angle. All these factors
make the optimized map less consistent than the one
in indoor forest. But with proper feature extraction and
data association, the back-end optimization demon-
strates its positive effect in correcting the trajectory
and generating more consistent map.

6.3 Autonomous Flight with Online GraphSLAM
and Online Path Planning

We have validated the performance of the UAV nav-
igation system using online consistent state estima-
tion and robust perfect tracking. The previous two
tests have used predefined trajectory references dur-
ing flights. In practice, the flight area is unknown prior
to the take-off, requiring the UAV to be able to avoid
any obstacles in its vicinity during the flight period.

Fig. 17 Consistent map

Online path planning is demanded to provide real-
time trajectory references which avoid the obstacles
and maintain the original trajectory route as much as
possible.

We designed a flight test to verify the UAV navi-
gation system including the online GraphSLAM and
online path planning. The UAV is required to travel
to five waypoints (w1-w5) which fall on a rectangle
shape, which are labeled as black circle in Fig. 17.
Once reaching a waypoint, a hover of 10 seconds is
performed. At each corner of the rectangle, the UAV’s
heading is shifted 90 degrees clock wise after the hov-
ering. Without obstacles, the designed trajectory is a
rectangle shape. However, as shown in Fig. 17, there
are two obstacles (T1, T2) lying on the connected
line of the waypoints. To reach the waypoints, the
UAV must find other feasible path instead of the direct
connection between the waypoints.

The whole mission was fully autonomous, includ-
ing take-off, waypoint navigation, obstacle avoidance,

Trajectory and map for indoor forest data

with obstacle avoidance 10
trajectory. The UAV is
required to follow a
rectangle shape trajectory
with five waypoints (black
circle wl-w5) along the
way. At each corner of the
rectangle, the UAV’s
heading is shifted 90
degrees clock wise. The red
dot trajectory is the real
flight path which avoided
obstacles (T1, T2) on the
rectangle
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online GraphSLAM and landing. The flight data
were recoded onboard and plotted in Fig. 17. The red
dot trajectory is the real flight path which avoided
obstacles nearby the rectangle. The blue dots plot is
the accumulative plot of the environment, including
the trees, rectangle pillars and walls. The blue good
shape of walls and pillars in the map demonstrates
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Fig. 18 Onboard trajectory tracking performance with obstacle
avoidance. The whole mission is fully autonomous, includ-
ing take-off, waypoint navigation with online GraphSLAM and
obstacle avoidance, and landing. Figure 18a—d show the good
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Yaw angle (deg)

y—axis positin (m)

the consistency of the trajectory estimate of the
entire mission. Figure 18a—d show the good tracking
performance in x, y, z and heading i directions,
validating all the algorithm developed in this paper:
the consistent state estimation algorithm, the obsta-
cle avoidance and the robust and perfect control
technique.
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tracking performance in x, y, z, and yaw directions, validating
all the algorithms developed in this study: the consistent state
estimation algorithm, the obstacle avoidance and the robust and
perfect control
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7 Conclusion

We have presented the navigation system for UAV in
foliage environment and verified the system in real
flight tests. Various essential parts of the navigation
system have been presented, including model and con-
trol, state estimation and path planning. The model of
a quadrotor UAV is first structured as inner loop and
outer loop models. The inner loop model is stabilized
with a commercial autopilot. To track any external ref-
erence with disturbance rejection capability, we have
designed a robust perfect tracking outer loop control
law. The outer loop control law demonstrates perfect
tracking of given position reference in the autonomous
flight of UAV in forest.

The state estimation framework of UAVs in foliage
environments is the focus of this manuscript. The
framework consists of a front-end and a back-end. The
front-end is a real-time motion estimation by match-
ing scans from the onboard laser range finder. The
velocity measurement from the scan matching is fused
with the acceleration of the IMU in a Kalman filter to
provide the high update rate state estimation for the
outer loop control. The back-end optimization is a cus-
tomized GraphSLAM algorithm. To make optimiza-
tion constant in time, a sliding window technique is
introduced to optimize those poses falling in the time
window. All initial poses from the Kalman filter in
the time window form a local pose graph. By optimiz-
ing the local graph, the initial pose from the Kalman
filter is updated and fed back to the controller to cor-
rect the position drift of the front-end. If necessary, the
locally optimized poses could also form a global pose
graph which is optimized at the end of the mission to
produce a globally consistent trajectory and map.

We also developed the real-time path planning
using the measurement of the horizontal laser range
finder. An A* searching is performed in the local grid
map to produce a candidate target point. Considering
the dynamics constraints of the UAV, the trajectory
generation is formulated as a boundary value prob-
lem and solved in analytic form, achieving real-time
performance in obstacle-strewn environment, espe-
cially forests.

To verify all the developed algorithms, we per-
formed autonomous flight tests in indoor simulating
forests and outdoor practical forests. Given a mission
plan with five waypoints, the UAV can navigate pre-
cisely using the proposed motion estimation technique

and avoid obstacles along the trajectory. Replaying the
recorded laser scans on the estimated poses generates
consistent map of the environment, demonstrating the
accuracy of the navigation system.

We are now working on the improve the navigation
system in the following aspects. First, the laser-based
motion estimation will be fused with other measure-
ment, such as visual odometry from optical flow
sensors. This is due to the fact that laser range finders
have limited measurement range and may return lit-
tle measurement points in sparse environments. Visual
odometry can serve as a complimentary odometry
measurement in such scenarios. Second, we are work-
ing to increase the flight speed of the UAV form 0.5
m/s to 5 m/s. This is essential to increase the oper-
ation range of the UAV in the constraint of limited
flight duration. Fast flight of UAVs in obstacle-strewn
environment poses great challenges for motion esti-
mation and path planning. Last but not least, we
are trying to develop real-time 3D motion estima-
tion and path planning. The current navigation system
relies on a 2D laser range finder, which is based on
an assumption that the environment does not change
drastically in the vertical direction. We are investigat-
ing the possibility of using stereo cameras or RGB-
D cameras for 3D navigation of UAVs in complex
environments.
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